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Motivation
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• NARFBs opens up design space for redox-active 

materials; metal-ligand, or organic molecules (ROMs)

• More expensive solvents and electrolytes and lower 

power density

• Compensated by higher energy density

• NARFBs are ideally suited to take advantage of low-

cost, multi-electron, metal/ligand and organic 

molecule based chemistries if they can address long 

term stability.
R. Darling et al, Energy Environ. 

Sci, 7 3459-3477 (2014) 



Approach
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1. Synthesize/Evaluate Metal-ligand based redox active 

molecules
a) Single molecule as both anolyte and catholyte

b) Iron based chemistries to expand on the 

reported Iron bi-pyridine system

c) Evaluate solubility and stability to discover 

promising systems

d) Expand to ROMs (different materials as anolyte 

and catholyte)

2. Synthesize/evaluate membranes/electrolytes
a) Use V(acac)3 systems as model non-aqueous 

system to evaluate electrolytes and membranes

b) Developed transference number measurement 

apparatus to evaluate membranes

J. Mun et al, Electrochemical and Solid-

State Letters, 15 (6) A80-A82 (2012) 

Q. Liu et al, Electrochemistry comm., 

11(12) 2312-2315 (2009)



Timeline
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• LANL LDRD-DR – October 2016 to September 2019
• Established LANL capabilities in non-aqueous flow batteries

• Theoretical modeling of non-aqueous flow battery materials : potentials and solubility

• Membrane development for aqueous systems

• Flow battery testing/characterization capability : Nickel and Iron based chemistries for 

non-aqueous flow battery systems

• Workshop – January 2019
• Development of stable low-cost redox couples that exhibit a > 3V potential window

• Development of high conductivity (area specific resistance ≤ 3 Ωcm2) durable 

membranes/separators compatible with non-aqueous solvents

• Development of non-hazardous (lower toxicity and flammability than acetonitrile) 

electrolytes

• This project – February 2020
• Development of Fe and organic compound based active materials for NARFBs

• Understand effect of membranes and solvents on NARFB stability 
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- Supports multi-electron

Redox

- Supports high voltages

- Easily modifiable

- Inexpensive system

1 mM Fe(Me-PyIm) in 0.1 M 

TBAPF6/ CH3CN, 100 mV/s

Energy Storage Materials 37, 576-586



Iron Iminopyridine - Stability
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Conditions:

0.05 M Fe(Me-PyIm) + 0.5 M TEABF4 / CH3CN

40 ml each side

Flow rate: 20 ml/min

Cut-off voltage: 1.0 – 2.3 V (50% SOC)

Operating current density: 5 mA/cm2

Separator: Celgard 2325 – 3 pieces

~ 50% SOC
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Energy Storage Materials 37, 576-586

Follow on work

Future work

Further enhance solubility and stability



V(acac)3 as model non-aqueous system 
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• Vanadium acetylacetonate cycles stably, supporting 

charge/discharge for >150 cycles.

• The nonaqueous support (Acetonitrile) does not strictly 

limit power; cells can tolerate high current densities.

• Very stringent control over moisture and purity of 

RFB components are required.



Solvent Effect
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No efficiency loss 

Electrolyte: 0.05 M V(acac)3/0.5 M TEABF4

Flow rate: 40 ml/min

Voltage: 1.0 -3.0 V

Celgard Porous 4560 separator x 2

Impervious bipolar plate

Cell Area: 10 cm2

0.016% per cycle 0.16% per hour

Electrolyte: 0.05 M 

V(acac)3/0.5 M TEABF4

Flow rate: 20 ml/min

Voltage: 1.0 -2.7 V

Celgard Porous 4560 

separator x 1

Impervious bipolar plate

Cell Area: 10 cm2

• Electrolyte is stable for 100+ cycles

• Solvent controls electrolyte conductivity

• Higher currents in ACN and lower 

currents in PC
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Membrane Effect
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Electrolyte: 0.05 M V(acac)3/0.5 M 

TEABF4

Flow rate: 20 ml/min

Voltage: 1.0 -2.7 V

FAP-375-PP

Impervious bipolar plate

Cell Area: 10 cm2

Solvent: Acetonitrile

• Membrane failure after 25 cycles

• 3.45% energy loss per cycle

• 13.24% energy loss per hour

• Electrolyte is stable

• Nafion® electrolyte also unstable for NARFBs

• Fumasep FAB-PK-130 also unstable

Electrolyte: 0.05 M V(acac)3/0.5 M 

TEABF4

Flow rate: 20 ml/min

Voltage: 1.0 -2.7 V

FAP-375-PP

Impervious bipolar plate

Cell Area: 10 cm2

Solvent: Propylene Carbonate
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Membrane Development
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Synthesized by Dr. Park @ LANL

Quaternized poly(arylene ether benzonitrile) membranes Polarization curves and capacity decay of QA50CN Membranes

Conditions:

1 M VOSO4 / 2.5 M H2SO4

~100%SOC

60 ml/min flow rate

60 ml volume each side

- High MW polymer, easy membrane fabrication

- Highly selective for Vanadium ions, no crossover in 500 h

Journal of Membrane Science 617, 118565 (2021)



Transport Number Determination
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• Proton gradient 

affects the 

selectivity of 

membranes.

• Protons are 

major charge 

transport carrier 

in aqueous flow 

batteries where 

proton gradient 

exists. 

Collaboration with ORNL (Jagjit

Nanda) and SNL (Cy Fujimoto)



Acknowledgements

10/11/2021Los Alamos National Laboratory

• Dr. Imre Gyuk. Director of Energy Storage Research, Office of Electricity

• Dr. Sandip Maurya : Flow battery testing and membrane development lead at 

LANL

• Dr. Benjamin Davis : Redox active Materials synthesis lead at LANL 

• Dr. Travis Palmer and Dr Kate Ashley Jesse : LANL post docs

• Sergio Diaz Abad, Guest Researcher at LANL (Universidad de Castilla – La 

Mancha)

• Dr. Travis Anderson : Technical point of contact from SNL

• Dr. Erik Spoerke and Dr. Babu Chalamala : Program Management of Sub-

contract from SNL

13



Conclusions/Future Work
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• Redox active molecule development:
• Our focus will continue to be on the development of redox chemistries based on abundant 

materials e.g., Iron and/or redox active organic molecules.

• We have developed Iron pyridylimine complex for symmetric flow cell with 2.29 V cell 
voltage. Further, solubility of complexes will be improved by introducing zwitterionic or ester 
groups. 

• Non-aqueous flow battery field is in its nascent state and as of now no chemistry possess 
enough calendar life for commercial use (< 10% capacity loss per year).

• We will study calendar shelf life of molecules in charged state to evaluate long term 
chemical stability. 

• Membranes:
• Very few chemistries can be used as anolyte and catholyte. Therefore, lot of efforts are 

independently focused on development of either anolyte or catholyte. 

• Our preliminary data suggest, commercial membranes are not suitable for non-aqueous 
redox flow battery. 

• Apparatus developed for measuring transport number and V(acac)3 system used to 
evaluate membrane stability. 

• Publications:
• Three papers published in 2021 (One joint paper with SNL)

• One paper submitted in 2021 (Joint paper with SNL)
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